
ED 090 982

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

DOCUMENT RESUME

IR 000 593

Hsiao, D. K.; And Others
Context Protection and Consistent Control in Data
Base Systems (Part I) .
Ohio State Univ., Columbus. Computer and Information
Science Research Center.
Office of Naval Research, Washington, D.C.
OSU-CISRC-TR-13-9
Feb 74
33p.

MF-$0.75 HC-$1.85 PLUS POSTAGE
*Computer Programs; Computer Science;
*Confidentiality; *Data Bass; Data Processing;
Information Storage; Input Output Devices; Time
Sharing
*Data Protection Systems; Data Security Systems

ABSTRACT
Although the indispensibility of access control

mechanisms in data secure systems has been recognized, there is a
need for more subtle protection and refined control mechanisms. This
report describes context protection mechanisms which enable the same
data unit to be protected differently in different contexts, the
differences being determined by the manner in which the fields and
records are being accessed. The study shows that the method can be
enforced by means of certain built-in relations among the data units
involved. Three basic and primary relations are proposed as a
starting point for more elaborate control systems. These primary
relations allow the necessary and sufficient conditions under which
violations will occur to be identified. With these conditions and the
security system, it becomes possible to propo:Je a data definition
language for specifying data base protection requirements and to
develop an access control mechanism for enforcing the requirements.
(WDR)

.1
1041
0

0
4
1

'
0
0

.
-

m
o
m

4
01

0t
o
s
o.

,s
,

s
0

0
0

o
os
o

4
.

64

a

S

,O
r

-

4
1
4
1
'

.
0

.%
i
i
,

'

.
*
*

0
0
0
0

S
o
m
e
.

4
0

4
0
.

W
O
O

.
0
4
o

0
0

4
0
0
.

0
0

s
r
,
.

t
o

t
o
e

W
O
O

4
1

o
o
e

4
.
1
0

4
0
0

0
0

OSU-CISRC-TR-73-9

CONTEXT PROTECTION AND CONSISTENT CONTROL

IN

DATA BASE SYSTEMS

(PART I)

by

D. K. Hsiao, D. S. Kerr and C. J. Nee

Work performed under

Contract N00014-67-A-0232-0022, Office of Naval Research

US DEPARTVINT OF HEALTH.
EDUCATION & AELFARE
'NATIONAL iSIITUTE CF

EDVCAriON'. ,f
f

.. NAT
1.4 r

The Computer and Information Science Research Center
The Ohio State University

Columbus, Ohio 43210
February 1974

Preface

The project on Data Security and Data Secure Systems was
formed in the Fall of 1972 and funded on March 1, 1973. The

principal investigator of the project is Dr. David K. Hsiao,
Associate Professor of Computer and Information Science. There
are five Graduate Associates and Assistants on the project.
They are R. I. Baum, N. Kaffin, E. J. McCauley, C. J. Nee, and
S. Peden. Pr2sently, Dr. Douglas S. Kerr, Associate Professor
of Computer and Information Science, is serving as an investigator
on the project.

Five major research and experimentation efforts are underway.
We intend to issue a series of technical reports at the milestones
of these efforts. Although early reports may be preliminary, we
believe that they can serve as the position papers of the pursuing
research. These five research and experimentation efforts are
listed as follows:

(1) A data secure system based on tha theory of security
deadlock.

(2) Theoretical foundations for context protection and
consistent control in data secure systems.

(3) A data secure computer (hardware) architecture.

(4) Design and certification of data secure system
kernels.

(5) A system for experimenting access control mechanisms.

The report is published by the Co:4uter and Information
Science Research Center of The Ohio State University which consists
of the staff, graduate students, and faculty of many University
departments and laboratories. The research was administered and
monitored by The Ohio State University Research Foundation.

ii

Abstract

Although the capability of the access control mechanisms
to regulate field, record, and file security has been recognized
as indispensible in advanced data secure systems, there is the
need of more subtle protection and refined control which we shall
call context protection and consistent control. Context protection
enables the same data unit (field, record or file) to he protected
differently in different contexts. For example, the same data
field may be protected differently in different records. The
difference may be determined by the manner in which the fields
and records are being accessed. Consistent control is concerned
with the problem that when new data units based on the old data
Halt.; of the data base are created by the user, these data units
must le protected consistently in the sense that their access
attributes must be generated automatically and must conform
with the access attributes of the old data units. nur study has
begun to show that both context protection and consistent control
can be enforced by means of certain built-in relations among the
data units involved. These relations under certain conditions
can reveal any violation of context protection and consistent
control. Here our first step is to identify those relations which
are basic and primary to the contextual relations. it is hoped
that by proposing these basic and primary relations, more elaborate
contextual relations among data elements can be defined for
protection reasons. Furthermore, a method of enforcing the
protection can be facilitated by these basic and primary relations.
Necessary and sufficient conditions under which a protection violation
will occur due to contextual security constraints must he identified.
With these conditions and the method, it will be possible to
propose a data definition language for specifying data base protection
requirements and to develop an access control mechanism for enforcing
the requirements.

This report presents our first finding in context protection.
No discussion on consistent control is included here. A graph-
theoretic approach is used. The use of directed graphs is not
surprising since graphs are good candidates for representing
simple relations.

iii

Table of Contents
Page

Preface ii

Abstract iii

1. A Simple Example--The Limitation of Access Matrix 1

2. The Choice of a Graph Theoretic Approach 3

2.1 Some Definitions and Restrictions 4

2.2 Built-in Access Control Relations 6

3. Context Protection 9

3.1 Three Cases of Context Protection 9

3.2 Access Control Relations for Context Protection 10

The Access-order Relation 10

The Bi-directional Access-order Relation 12

3.3 Violation of Access Control Relations 14

3.4 The Context Relation 15

Detection Rule 1 18

Detection Rule 2 18

Resolution Algorithm 18

4. Application of Context Protection to Job Processing 19

5. Summary 26

References 28

iv

1. A Simple Example--the Limitation of Access Matrix

Conceptually, an access control mechanism in a computer

system consists of three parts. The first part is a set of

obiects, an object being an entity to which access must be

controlled. The second part is a set of subjects, a subject

being an active entity whose access to objects must he controlled.

The last part of the access control mechanism consists of the

rules which govern the accessing of objects by subjects. Examples

of objects are files, records, fields, and programs. User tasks

executing in the computer system are examples of subjects.

In this discussion, all the time-variant information

specifying the types of access to objects that subjects have

is regarded as constituting the access control information of

the mechanism. At a given time, the access control information

may be represented by an access matrix A, ,Ath subjects identifying

the rows and objects the columns. The entry A(S,0) contains

access attributes, specifying the access rights held by subject

S to object 0. Below is an example of such an access matrix A,

as depicted in (4,91:

Si

S2

S3

S4

01 02 03 04 05 06

W E

4--

7---R, R,W

P

R R
1

-- -

R,W

W
E 1 R,W R,W

i

In this matrix, the Si denote the subjects and Oi the objects.

The ent0 ries A(Si3Oi) denote the access attributes, for example,

R, W, E, and P (i.e., Read, write, Execute, and Pr.nt, respectively).

In examining the matrix, we make the following observation:

(1) There are usually more objects than subjects. This

is particularly evident in a data base environment.

Thus, the number of columns in the matrix will be

much greater than the number of rows.

(2) The matrix is sparse, especially when each subject has access

to a relatively small number of obj2cts in the data base

system.

(3) In the same matrix two or more rows may be identical, indicating

that two or more subjects have identical access attributes with

respect to the same objects. As far as the access control

mechanism is concerned, these subjects are alike (e.g., the rows

identified by S1 and S4 in A are identical.).

(4) Similarly, two or more columns in the access matrix may be

identical. When this happens, the objects may be accessed in

the same manner.

(5) Many matrix entries are identical. For example, A(Sl,04) and

A(S1,05) are identical.

Because the access matrix is sparse and has many columns (i.e., many

objects involved), attempts have been made to organize the matrix into

manageable pieces for effective use. Consider the following two approaches.

One is to organize for each subject a list of access attributes of all the

objects accessible to the subject. In this approach, the subject-row

approach, there is a list of access attributes specified for the objects

which the subject has been authorized to access where as the inaccessible

objects do not have access attributes associated with the list. Thus,

the list is compact and subject-oriented. Examples of using the subject-

row approach for managing access matrices in contemporary operating systems

are the so called capability list systems [3,8]. On the other hand in the

objectcolumn approach, for every object in the system there is a list

of subjects who have been given access with appropriate access attributes

to the object. Obviously, subjects who have no access to an object do not

have their access attributes included in the list for the object. Thus,

the list is again compact. however, it is object - oriented. An example

of using object-column approach for access matrices management in

current operating systems is the so called access list systems [2,10].

In both the capability and access list systems, the aim is to implement

the access matrix as depicted earlier without the redundant entries.

By organizing the access matrices into capability lists and linking

the entries for the objects in one list with the same objects in another

list. it is possible to have a capability list system whose listed

3

objects constitute effectively an access list system. Thus, in this

approach both subject-row and object-column are emphasized. Although

the linkage requires additional cost and processing, this approach

entertains considerable flexibility. An example of using this approach

in data base systems can be found in the authority item systems [6,7].

The access matrix as implemented in the capability list, access

list and authority item systems is well-suited to contain access control

information about the subjects and objects individually and explicitly.

By individually and explicitly we mean that before a subject Si is

granted or denied the access to an object, the access control mechanism

simply checks the access attributes associated with the entry A(Si,00

There is no need for the access control mechanism to consult any other

entry, say, A(Si3Oi) for access to the object 0i by Si. In other words,

access attributes associated with Si and Oi are explicitly contained in

A(Si3Oi). Furthermore, these and only these access attributes can cause

the granting and denying of the subject's access to the object.

In a real data base system environment, access attributes are often

implicitly defined as relations among objects and subjects. For instance,

the specification "S2 may not print 05 together with 04" is a relation

between objects 04 and 05 over subject S2. Similarly, the specification

"02 can only be read by S3 if it has been written by 86" is a relation

between subjects S3 and S6 over object 02. These relations, which we

shall call access control relations, are difficult if not impossible to

represent in an access matrix. There are also more subtle access control

relations. It is, therefore, the aim of this study to investigate some

of the basic access control relations and to establish the rules which

govern the accessing of objects by subjects on the basis of these relations.

Particular emphasis will be on objects whose entities are real. -world data

items such as fields, records, files, and directories. We will refer to

a data base system whose access control mechanism can enforce access control

relations among objects a data secure system.

2. The Choice of a Graph-Theoretic Approach

As mentioned in the previous section, the access matrices are not

adequate to represent the access control information of a data secure

system. Instead, directed graphs will he used. There are several reasons

for using directed graphs. First, objects and simple relations among objects

can easily be represented by nodes and edges between nodes. Secondly, in

the course of investigating simple access control relations, it is discovered

that the order in which objects are being accessed is important. This

access ordering of objects is readily representable by a path in a

directed graph. Finally, directed graphs and mechanisms based on directed

graphs have borne satisfactory results in some other areas such as computer

system deadlocks (5]; we think that directed graphs may also be useful in

the study of data secure systems.

2.1 Some Definitions and Restrictions

Some definitions of terms from graph theory are given here. A directed

graph is a pair (N,E), where N is a nonempty set of nodes and E is a set of

edges. An edge e c E is an ordered pair (a,b) such that a and b are nodes

in N. The edge (a,b) is said to be directed from a to b . An isolated

node is a node with no edges directed to or from it. A path is a sequence

of at least two nodes (a,b,c,...,t,u), where (a,b), (b,c),..., and (t,u)

are edges. A cycle is a path whose first and last node are the same.

A user is a group of one or more subjects such that they all have the

same access attributes to the same objects. In referring to the matrix

notation, we have, for example, that any two subjects S1, S2 are members of

a user U (i.e., Si, S2 E U) if and only if A(S1,0t) = A(S2,00 for i = 1, 2, ...,

n, where n is the number of objects (columns) in matrix A. It is clear that

each subject belongs to one and only one user and users are mutually disjoint.

Furthermore, the subject-oriented systems become user-oriented systems.

The grouping of objects is similar to the grouping of subjects,

i.e., identical columns in the matrix, for example, are grouped together.

In a user-oriented system, the number of object groups for each user can

be reduced even further. For the user U, two objects 01, 02 belong to

the same object group G (i.e., 01, 02 c G) if and only if A(S,01) = A(S,02),

where S is any subject of U. We note that the grouping of objects is

different for different users in a user-oriented system. Also, each

object belongs to one and only one object group. In other words, if 0 E GI

and 0 c G2 then G
1

= G2. In our discussion, the object groups are called

data units.

We would like to impose a few restrictions at the beginning to facilitate

the discussion of access control information. Generalizations will come at

a later time. The first restriction is that users are not considered as

objects. This does not mean that users need not be protected since the

only protected entities in the system are objects. Its sole purpose is to

ease the discussion. The second restriction is that instead of creating

one large directed graph for all the access control information, a

directed graph is created for each user. As we recall that the access

control information of the data secure system constitute, at a given time,

all the specifications regarding the types of access to objects that

subjects have in the system. This information is too large to be used for

subsequent discussion. Therefore, at a given time only the part of the

access control information which deals with the data units that the user

has will be depicted by a directed graph. Nevertheless, the set of

directed graphs for all users of the system represents the access control

information of the system. The directed graphs are called user directed

graphs (UDG):

To distinguish one type of nodes from another, different shapes of

nodes and edges are used in a user directed graph. A square node is used

to represent the user while circular nodes are used for each data unit

involved with this user. Data units which are not accessible to the

user are not included. The collection of all accessible data units for

a user is called the user's logical data base.

Each node will contain a certain amount of information. The square

node contains only the name of the user. A circular node contains two kinds

of information: the name of the data unit and the access rights (i.e., attributes)

the user has to access that data unit. The name and attributes are separated

by a slash (/). For example, if Dl is the name of a data unit for user U,

then a node containing Dl/A(S,O) for each S E U and every 0 c Dl must be

present. This is too redundant. We thus come to the third restriction

that each data unit is represented by one and only one node in a user directed

graph. Thus the name of a data unit will be used to denote either the data

unit or the node representing the data unit.

Only two different types of edges are to be discussed here: the edges

between the square uode and circular nodes and edges between circular

nodes. An edge represented by a single arrow directed from the square

(user) node to a circular node indicates that the user Is requesting an

access to the data unit represented by that node. If the arrow is directed

in the opposite direction, it indicates the granting of the desired access

to the data unit for the suer. We term the former the request edge and the

latter the grant edge. A grant edge cannot he deleted, while a request edge

can be deleted. In fact, these are the only edges which do not represent

access control relations.

2.2 Built-in Access Control Relations

Directed edges between circular nodes represent access control relations

between data units. The discussion of access control relations between data

units will occupy a substantial part of this study in the following sections.

Here we Amply illustrate the absence and presence of access control relations

between data units by way of directed graphs.

Example 1. Consider the first and fourth rows of the access matrix A

presented earlier. Since these two rows have the same access attributes

with respect to the objects, the two subjects S1 and S4 belong to the same

user Ul. There are exactly four accessible objects to the user, namely,

01, 03, 04, and 05. However, 04 and 05 have the same attributes with respect

to the subjects, they can be grouped into one data unit. In summary, we have

Ul = (S1, S4},

D1 = {04, 05),

D2 = (011,

D3 = (03).

In the user directed graph, we have

7

Example 2. Consider the second row of the access matrix A. We have

the following

U2 = {S2},

Dl = {04, 05}.

U2

Example 3. Consider the third row of the access matrix A. We have

U3 = LS31,

Dl = {04,

D4 = {00.

The above examples show that the access matrix A can be easily represented

by three directed graphs. In addition, as we shall see, directed graphs

can facilitate the representation of access control relations which are

difficult to be included in the access matrix. For instance, let us

impose the access control relation "S2 may not print 05 together with 04"

onto one of the above examples, namely, example 2 and represent the

relation with a bi-directional edge. The directed graph then takes the

following form for

U2 = fS2},

D5 = f041,

D6 = f05L

U21

Now several observations are worth stating. First, the access

control relations among data units, as depicted by the bi-directional

edge in the above example, are built-in relations. Their presence among

data units may cause data units to be used,for more elaborate access

control purpose. Secondly, at the very beginning all nodes in a user

directed graph are isolated nodes, except those connected by edges

representing built-in access control relations. Third, the granting of

data units to a user is deemed "permanent". Consequently, grant edges

cannot be deleted for a certain duration of time In other 'words, the

presence of the grant edges serves as a reminder that access has been

given to certain data units. Without this reminder the access control

mechanism cannot prevent a user from circumventing the access control

relation among data units by making access requests at different times

on the related data without regarding to the built-in restrictions. For

instance, in referring to the user directed graph given above, we may have

the following three cases.

Case 1. The user requests the printing of data unit DS.

Requesting
U2-1

Case 2. The user's request is granted.

Case 3. The user U2 requests the printing of data unit Db.

Built-in ACR

Granting Requesting

9

Because the grant edge (from D5 to 112) is still there, the

access control mechanism can determine whether access to D6

should be granted on the basis of the built-in access control

relation between D5 and D6. if the grant edge is not

"permanent", user U2 will be able to print both D5 and D6

by submitting one job for printing D5 and then another Job

for printing P6, in spite of the given access control relation.

Throughout this report, we will use the following notations:

U, Ul, 1!2, U3, ... for representing and naming users

D, D1, D2, 03, ... for data units

A(x) for access attributes of data unit x.

3. Context Protection

Intuitively, we say that a data unit D2 is the context of another

data unit Dl if the access attributes of Dl is affected by the accessing

of D2. For example, consider data units D3 and P4 such that D4 cannot

be printed if D3 has been printed. D3 is the context of n4. From now

on, if P2 is the context of Dl, we call Di the text of 02.

3.1 Three Cases of Context Protection

Context protection means that the same data unit may have to be

accessed differently in different contexts. At least three cases can

be identified.

Case 1: A data unit can be accessed based on certain access attributes

such as write and print if its context has not been accessed

by the user. However, it can not be accessed at all when

its context has been accessed by the same user. This case

is a simple case of context protection.

Case 2: A data unit has different access attributes associated with

different contexts. For example, a personnel officer may

have the rights (i.e., proper access attributes) to get a

list of the names of all employees and a separate list of

the salaries of all employees. Furthermore, the officer

is directed from time to time to change the salaries of

certain employees. Nevertheless, he is not allowed to list

the salaries while names are being listed. In this example,

the data unit of employee names is the context of the data

unit of employee salaries. As far as the data unit of

10

names is concerned, it involves no context protection because

this data unit is not in the context of any data unit. The

access to the data unit of names is solely determined by

the access attributes of the data unit. On the other hand,

the data unit of salaries can only .e listed when its

context is not involved and can he changed when its context

is indeed involved. In other words, the access to the data

unit of salaries depends upon whether the data unit of

names has been accessed or not. Such is a more advanced

case of context protection.

Case 3: If a data unit is the text of more than one context and for

each context there is a set of different access attributes

associated with the text, then this case is a generaliz,Aion

of case 2. For example, suppose the data unit Dl is the

text.of data units D2 and D3. Whenever the data unit D2

is accessed, the access attributes of DI., i.e., A(D1),

will become ari. Whenever the data unit D3 is accessed,

A(D1) will become ar2. These two sets of access attributes

for D1, namely, ar1 and ar2, are usually different.

Thus, by context protection we mean also the control of access to

data units involving the above three cases.

3.2 Access Control Relations for Context Protection

As we have discussed earlier, there are various kinds of access

control relations in a data secure system. Essentially,, these relations

define the manner in which access to the related data units should take

place and the access attributes with which the data units should be

controlled. In particular, we are interested in those access control

relations which have an impact on context protection. It is hoped that

by identifying these access control relations, effective access control

mechanisms can be developed for the data secure system to enforce the

context protection of data units. The following three relations are

proposed. It should be obvious to the reader that these three access

control relations have resulted from the study of the three cases in

the previous section.

An access-order relation AO(x,y) with respect to a user U is a

relation between two data units x and y in a user directed graph hush

that y cannot be accessed in any manner by the user U when an access

to x.has been granted to the same user. Graphically, this relation is

represented by

where A(x) and A(y) are access attributes of x and y, respectively.

The access-order relation car be used to characterize the access

requirements that, for example, if the user has access to this record

for reading then he cannot access the other record for reading. Let

the user be U, this record be data unit D1, the other record be data

unit D2, and the access attribute "reading" be R, we have the following

user directed graph.

D1/

A(D1,D2)

When the user makes a request to read DI, the user directed graph becomes

A(D1,D2) edge

Request
edge

u I

The request is granted. The user directed graph is now as follows

12

Sometime later, the user requests the reading of the other record. This

is reflected in the user directed graph as follows

A(D1,D2) edg'

Grant Request
edge edge

Figure 1

The question is whether the new request is to be granted. Based on

the access requirement, this request should be denied since it was understood

at the c.utset that D2 cannot be read if Dl has been read by U.

A bi-directional access-order relation BA0(x,y) with respect to a user

U is a relation such that only one of data units x and y can be accessed

by the user. Graphically, it is represented by

We observe that BA0(x,y) implies A0(x,y) and AO(y,x). Furthermore,

BA0(x,y) = BAO(y,x).

The bi-directional access-order relation can be used to characterize

the access requirements that the user can print the employee names or

the employee salaries but not both the names and salaries. Let the user

be U, the set of employee names be the data unit Dl, the set of employee

salaries be the data unit D2, and the access attribute "print" be P.

Thus the user directed graph is as follows.

BAO(D1,D2)

13

Now a scenario of requesting access to data units by the user and granting

access to data units for the user will be depicted as follows.

The user is requesting a list of data unit Dl.

BAO(D1,D2) edge

Request
edge

The request is granted as reflected in the following user directed graph.

BAO(D1,D2) edge

Grant
edge

Although the first request has been granted, the user is making a

.equest for listing the data unit D2 as follows.

BAO(D1,D2) edge

Grant
edge

NNNN,'j'

Request
edge

Can the second request be granted? Of course, not. Let us look

at the user directed graph again without annotation.

14

We note that the directions of the edges form a cycle. We further note

that for the case involving the access-order relation in Figure 1, there

is also a cycle. The cycles in user directed graphs are intended to

reveal those requests whose granting may render access control relations

invalid.

3.3 Violation of Access Control Relations

An access control relation between data units is violated if the

granting of a request for one of the data units makes the definition of

the relation false. A violation of protection in a user directed graph

is therefore defined to mean that one or more access control relations

(so far only AU and BAO) in the user directed graph are violated due to

the granting of a user request. With these definitions, we can prove

the following theorem.

A violation exists if and only if there is a cycle in a user directed

graph such taht

1. one node in the cycle is the user (square) node,

2. each circular node in the cycle is either granted or requested, and

3. the edges, except the grant and request edges, represent AO or BAO

relations.

15

3.4 The Context Relation

Although access control relations such as AO and BAO are simple and

useful, they are not as powerful as desired. They are unable to enforce

the last two cases of context protection. Thus, a more powerful relation

must be introduced. The new relation must have the ability to pass

access control information from the context to the associated text in

order to determine the new attributes of the text, when the context is

accessed. This new relation is called a context relation.

A context relation C(x,y) is a relation between two data units x

and y such that y is the context of x. The node x is called the text

node (TN). The node y is called the context node (CN). They are

regular circular nodes. These two nodes are connected by a directed

edge from CN to TN. In addition, there is associated with the edge a

set S of access attributes for access attributes in A(y). Graphically,

the relation is represented by

(1iA(x))E S

U

where S = {S(a)la c A(y)1. For example, if A(y) = {al,a2}, then

S = iS(a1), S(a2)}, where S(a1) and S(a2) are sets of access attributes

associated with the edge. when an access to y is granted with access

attribute ai to a user, the new access attributes of x will be determined

jointly by A(x) and S(ai). The ways of determining the new access

attributes of x based on the attributes of x (i.e., A(x)) and the imposed

attributes (i.e., S) will be given later in this section. On the other

hand, if the data unit y has never been accessed, the imposed access

attributes have no effect on the subsequent access to data unit x.

Intuitively, A(x) and A(y) Lre used to determine access requirements to

x and y, respectively,when no context protection is required. However,

if there is any need of context protection, a set S of access requirements

is created which exercises control over the access requirements of the text,

16

in this case, x. This control is related to every access control requirement

of the context, y. In other words, for each access requirement ai of A(y)

there is a related set of access requirements S(ai) of S. the S(ai) will

he used in conjunction with A(x) to form new access control requirements

for accessing x. With these new access control requirements, the

protection of x in the context of y can be assured.

We note that the edge directed from a context node to a text node

is the same as the request/grant edge. We do not care to distinguish

them because we always know the difference with the presence of S.

When there are two or more context nodes in a user directed graph, the

S's may be subscripted by the names of these context nodes. For example,

if y and z are two CNs of a UDG, then we may have Sv and Sz, each of

which is associated with an edge leading from the respective CNs.

Let us consider a simple example of two data units.

DI can be printed (by a user).

D2 can be printed.

D1 cannot be printed if D2 has been printed.

From the above specifications, we can construct the relation C(Dl,D2)

with A(D1) = A(D2) = {P} (P for print) and S = (S(P)) = {none}, where

"none" means no access at all. Graphically,

Now the new access attribute of D1 will be "none" if D2 has been printed

since the rule (to be discussed in sequel) says that the existing access

attribute P of D1 must be replaced by the new attribute "none"for accessillg Dl.

Two things are made clear by the above exat:ple. First, everythini7

that can be done by AO or BAO relations can be done by context relations.

Secondly, there must be rules to determine the new access attributes of

a text node based on its old access attributes, access attributes of

one of its context nodes, and the access attributes associated with the

edge leading to the text node. Indeed, two rules will be proposed which

can determine the new access attributes of a text node and govern the

17

granting and denying of an access to a context node. The granting and

denying of an access to a text node require no rules and are straight-

forward.

Before introducing the rules, we introduce the following conventions.

The access attributes given in S are represented by lower case letters,

e.g., r (read), w (write), p (print), etc. This is to distinguish them

from the access attributes of a circular node which are in upper case

since these attributes play different roles in the rules. Another point

to be mentioned is that the set A(x), where x is a data unit, usually

consists of more than one access attributes. In order to distinguish

which access attribute is granted to a user, the letter representing the

granted attribute is flagged. Although a grant edge is needed each

time a new attribute of the data unit is granted to the user, multiple

grant edges for the same data unit are not necessary. Since granted

attributes are flagged, we can simply identify the flags. Thus, a

single grant edge for the data unit will suffice.

The operations in the rules are set operations because A(x), S,

and A(y) are considered as sets of access attributes. In the rules,

"-", "n", and "f-" are set difference, intersection, and assignment,

respectively. Formally, if A and B are two sets, then

A 8 = lxix c A and x f Bl,

A(1 B= fxlx A and x B), and

A 4- B = B),

In our application, an access attribute, whether it is in a capital

letter, small letter, or flagged letter,is used as the same attribute.

Thus, r, R, and R are treated in the set operations as the same element.

For example, if A = {R,P} and B = r), then A - B = {P}. That is, R

and r are considered as the same element in the set operation. Furhter-

more, small letters override the corresponding capital letters in the set

intersection operation. For instance, if A = {W,P} and B = {w}, then

Ana = fwl. Finally, all flags are retained in the assignment and

intersection operations in order to keep track of the granted accesses.

Suppose A = (W,P} and B = {w,e }. Then

A 4- B = (W,e), and

AFB= (W).

Now the rules are given below. in addition to the notations, CN,

A(CN), TN, A(TN), and S as defined previously, we use the symbol "ar"

1.8

to mean the access attribute of CN for which the user has just made an

access request. Obviously, ar is a member of A(CN).

Detection Rule 1: If every member of A(TN) is a capital letter and there

exists a flagged member in A(TN) - S(ar), then the

granting of the user's request will result in a violation

of context protection. If at least one member of A(TN)

is in lower case or no member of A(TN) S(ar) is

flagged, there will be no violation. In this case, we

replace A(TN) with A(TN) t S(ar).

Detection Rule 2: If every member of A(TN) is a lower case letter and

there exists a flagged member in A(TN) - S(ar), then

the granting of the user's request will result in

a violation of context protection. If at least one

member of A(TN) is in upper case or no member of

A(TN) - S(ar) is flagged, there will be no violation.

In this case, we replace A(TN) by A(TN) n S(ar).

The application of the rules whenever there is a user request is

facilitated by the following resolution algorithm.

(1) Determine the access attribute, ar, of the data unit x

for which the user has requested.

(2) If ar A(x), deny the request. Return.

(3) Since ar e A(x), determine if there is a non-empty

S
x'

If none, go to step (6).

(4) Since Sx A 0, apply either Rule 1 or Rule 2. In

this application, x is obviously a CN.

(5) If there is a violation, deny the request. Otherwise,

flag ar in A(x). Return.

(6) Invoke the theorem.

(7) If there is a violation, deny the request. Otherwise,

flag ar in A(x). Return,

With the availability of the two rules, the theorem and the

algorithm, the access control mechanism of a data secure system can grant

and deny requests and reveal violations. However, there are two types of

violations. A violation resulted in step (5) is a severer case of

violation than the one_resulted in step (7). The former may damage the

context relations between two data units; the latter can only sever the

AO or SAO relations. Thus, the algorithm can resolve the difference of

19

these two types of violation. Both rules are designed to detect potential

violations of context protection among data units. Because the detection

of a violation of AO or BAO relations does not require elaborate rules

as in the case of context relation, a theorem for the violation detection

is provided. With the aid of the resolution algorithm, the access control

mechanism of a data secure system enforces expeditiously and properly

controlled access to data units of the data base for the user.

4. Application of Context Protection to Job Processing

Sample 1: Enforcement of a more advanced case of context protection.

User data base: user name U; data units D1 and D2.

Access attributes specifications:

D1 can be written or printed, i.e., W and P e A(D1);

D2 can be written or printed, i.e., W and P c A(D2); and

D1 cannot be printed if D2 has been printed, i.e., S.

User directed graph (UDG):

S = {S(W), S(P)}

where S(W) = {w,p}
and S(P) = {w}

Jobs: (For the ease of discussion, we suppose that only one job is

ever submitted by the user U. This job will be one of the

following four jobs.)

Job 1: Write D1

Write D2

According to the access control requirements, both

requests of the job can be granted. The first request

is granted because the proper access attribute W is

in A(Dl) and the request (edge) will not result in a

tl

20

cycle. Thus by the theorem, there will be no violation.

After the first request is granted, the UDG looks like

as follows.

S = {S(W), S(P)1

where S(W) = {w,p}
and S(P) = {w}

Grant
edge

We note that the access attribute W of D1 is flagged

indicating that a write request has been granted. The

second request is also granted due to the fact that

it is cleared by Detection Rule I with A(D1)

6.71,P), S(W) = fw,p), and A(D1) S(W) = 0. The final

graph is therefore

Grant Grant
edge edge

We note that the access attributes of D1 are replaced by

67,7,p'1, i.e., A(D1) is replaced by A(t1) S(W) as dictated

in Rule 1. Lower case letters in A(D1) indicate that

certain context protection has been facilitated.

21

Job 2: Write DI

Print D2

Again, both requests in the job can be granted according

to the specifications. The second request is granted

because the Detection Rule 1 has cleared the request

with A(Dl) = {c4,P}, S(P) = {w}, A(D1) S(P) = {P},

and A(D1) 4- S(P) = {W}. The final UDG is

We note that S(P) replaces A(D1) as dictated by

Rule 1 during the granting of the request.

Job _A: Print D1

Print D2

In this case, only the first request of the job

can be granted. The second one is not granted

because for D2 to be printed Dl must not have

been printed. More sOcifically, the UDG after

the first request is granted is

Grant
edge

S

22

The Resolution Algorithm upon receiving the second

request will invoke Detection Rule 1. Since

A(D1) = S(P) = (s.r, and A(Dl) 5(P) = {P},

there is a violation due to the flagged P. The

second request will therefore be denied.

Graphically, a cycle is also formed in this case.

That is,

S

Grant Request
edge J edge

Nevertheless, a cycle does not necsssarily mean a

potential violation when the relation involved is

a context relation. For example, a cycle existed

when the second request was made in job 2. That request

was indeed granted. On the other hand, a cycle

involving either AO or BAO relations always implies

a potential violation as stated in the Theorem.

Job 4: Print D2

Print D1

The first request can be granted because A(Dl) = fW,P},

S(P) = {w}, and A(D1) S(P) = {P}. By Detection Rule 1,

there is no potential violation. Thus the request is

granted and A(D1) is replaced by {w}, i.e., A(D1) S(P).

23

It is now clear that the second request of the job

for printing data unit Dl cannot be granted because

P 4 A(D1).

Sar'iple 2: Enforcement of a more elaborate case of context protection

involving several contexts.

User data base: user name U; data units D1, D2, and D3.

Access attributes specifications:

Di can be written or printed;

D2 can be written or printed;

D3 can be executed;

D1 cannot be executed if D2 has either been printed or

written; and

Dl can be executed only if D3 has been executed.

It is worth noting that there are five access attributes

specifications in this data base. The first three specifications

dealing with data units individually are therefore free

from context access control considerations. The last two

specifications are context-dependent. Furthermore, we note

that the data unit Di is the text node of the context nodes. D2

and D3. More specifically, the above specifications can be

,represented symbolically as follows:

A(D1) = {w,P },

A(D2) = {W,P },

A(D3) = CE1,

SD2 = {SD2 (W), SD2 (P)}, where SD2 (W) = fw,P0,e)

and 8D2 (P) = {w,p,le},

SD3 {SD) (E)} ({e,w,p}).

User directed graph:

24

U

Jobs: (The assumption that only one job is ever submitted by the

user U for processing is intended to simplify the discussion.

The one job will be either of the following two.)

Job 1: Write D2

Print D1

Execute D3

The first two requests of the job can be granted by

referring to A(D1) and A(D2). The last one can also

be granted by referring to A(Dl) and A(D3). Let us

follow through the scenario of the first two requests.

D2 is granted by Detection Rule 1, since A(D1) = (WM,

SD2(W) """ and A(D1) -SD2(W) = 0. There is no

violation. Thus, the UDG becomes

Grant

edge
U

25

The granting of the first request causes the W c A(D2)

to be flagged. Also A(Dl) is replaced by A(D1) Si)2M.

The second request is also granted because P c A(Dl)

and no S is associated with Dl. By invoking the Theorem,

no cycle is detected. Therefore,

Since the second request for printing is granted, the

p in A(Dl) is flagged. When the third request is

processed,Detection Rule 2 is invoked. We have

A(Dl) = {w5,1.,e}, SD3(E) = {e,w,p}, and A(D1)-SD3(E) = 0.

Thus, every member of A(D1) is in lower case and there

exists no flagged member of A(D1)-SD3(E) which implies

no potential violations. The request must therefore

be granted and A(D1) is replaced by A(D1) n sp3(E)

n {e,w,p} = {w5} where {tie} fl {e} = 0.

Furthermore, the access attribute E in A(D3) is

flagged. The final graph is

W P

Grant
edge

26

Job 2: Write D2

Execute D3

Execute DI.

The first two requests can be granted, but the last

one must be denied due to context-depdependent access

control requirements. After D2 has been written, the

UDG for this job is the same as the ,:rst graph of

Job 1. When the second request is processed,.

Detection Rule 2 is invoked. We have A(D1) =--

{w,p,'\-e),SD3(E) = {e,w,p }, and A(D1) SD3(E) = 0.

Since the members of A(D1) S
D3

(E) are not flagged,

there is no potential violation and the second

request is granted. Furthermore, A(D1) is replaced

by A(D1) n SD3(E) = (w,p). The UDG becomes

Grant rant

edge edge

Obviously the third request cannot be granted since

by now A(D1) = (w,p) and e f A(D1). Without the proper

access attribute in A(D1), there is no way that the

data unit D1 can be accessed.

Summary

In this report, we first pointed out the inadequacies of the access

matrix approach to represent the access control information in a data

secure system. Several existing attempts to organize the matrix into

27

manageable pieces for effective use were then discussed. They are

well-suited to contain access control information about the subjects

and objects individually and explicitly. However, in a real data base

system environment access attributes are often implicitly defined as

relations among objects and subjects. To cope with this problem, a

graph-theoretic approach was therefore chosen. In this approach,

access control rElations among data units can easily be represented by

edges between nodes, which represent the involved data units. Those

relatiOns which are involved with the discussion of context protection

are named Access-order relation, Bi-directional Access-order relation,

and Context relation. These three relations, together with the Theorem

on violation, two Detection Rules, and the Resolution Algorithm can

be used to enforce the desired context protection as depicted by the

three cases of context protection. Applications of context protection

to job processing were illustrated at the end.

28

References

1. Bergart, J.G., Denicoff, M. and Hsiao, D.K., "An Annotated and
Cross-Referenced Bibliography on Computer Security and Access
Control in Computer Systems," TPrginicai xoporr (nS11-ctRRC-TR-79-19).
The Computer and Information Science Research Center, The Ohio
State University, November 1972.

2. Daley, R.C. and Newmann, P.G., "A General-Purpose File System for
Secondary Storage," Proc. AFIPS 1965, FJCC, 27, 213-229.

3. Dennis, J.B. and Van Horn, E.G. "Programming Semantics for Multi-
programmed Computations," CACM, 9,3, (March 1966), 143-155.

4. Graham, S.G. and Denning, P.J. "Protection-Principles and Practice,"
Proc. AFIPS 1972, SJCC, 40, 417-429.

5. Holt, R.C., "Some Deadlock Properties of Computer Systems,"
Computing Surveys, 4, 3, (September 1972), 179-196; "On Deadlock
in Computer systems," Ph.D. Dissertation, Cornell University,
January 1971.

6. Hsiao, D.K., "A File System for a Problem Solving Facility," Ph.D.
Dissertation, University of Pennsylvania, (May 1968). Also
available from NTIS as report AD671826 and from the Moore School
as technical report (68-33).

7. Hsiao, D.K., "Access Control in an On -line File System," Fite
Organization: Selected Paper from FILE 68-An I. A. G. Conference,
Swets and Zeitinger N.V., Amsterdam, 1969, 246-257.

8. Lampson, B.W., "Dynamic Protection Structures," Proc. AFIPS 1969,
FJCC, 35, 27-38.

9. Lampson, B.W., "Scheduling and Protection in an Interactive Multi-
processor System," Ph.D. Dissertation, University of California
at Berkeley, (March 1967).

10. Organick, E.I., The Multics System: An Examination of Its Structure,
The MIT Press, 1972, 127-186 (Chapter IV).

1331103 IINE3S31:1

30 11:13rOB

110111:11,a1EBKII

4l3111E11;110

